Managing Basil Downy Mildew in the Greenhouse

Margaret Tuttle McGrath
Plant Pathology and Plant-Microbe Biology Section, SIPS, Cornell University
Long Island Horticultural Research and Extension Center
3059 Sound Avenue, Riverhead, NY 11901; mtm3@cornell.edu

2014 was arguably the worst year for downy mildew of basil in the USA. It began in the spring with several occurrences in greenhouses. This suggested there was a higher incidence of contaminated seed than previous years. Seed appeared to be the only possible source in greenhouses where basil was not grown year-round because this pathogen cannot survive long when basil is no longer present: its spores are short-lived, it cannot survive in dead plant debris, and it has no other known host plant. During spring affected plants were found for retail sale in garden centers, not only in New York (on Long Island), but elsewhere in the northeast, as far south as Tennessee, and also in Canada. There were more reports of basil downy mildew in the USA made to a web-based monitoring page in 2014 than previous years. Most were outdoor occurrences reported by gardeners. There were 284 reports from 35 states plus the District of Columbia, compared to 49–75 reports per year in 2009-2013. Most occurrences during summer are likely the result of wind-dispersed spores from other affected plants. Downy mildew has developed on outdoor-grown basil starting during mid-summer every year on Long Island since 2008.

Management practices:

1. Start with pathogen-free seed. Eurofins STA Laboratories in Colorado now tests basil seed for *Peronospora* spp (http://www.eurofinsus.com/stalabs/products-services-seed-health.html). It is sufficient to test only at the genus level with this pathogen since it is the only species of *Peronospora* that would be associated with basil seed.

 Seed companies are starting to steam treat basil seed. High Mowing Organic Seeds offers steam treatment. Basil seed is not amenable to hot-water treatment because while in water the seed produces a gelatinous exudate, which makes the seed challenging to handle.

2. Select resistant varieties. Good suppression of downy mildew can be obtained with new resistant varieties that started to be marketed in 2018. They are the fruition of several years of conventional breeding by breeders working separately on this goal. It can take many crosses to obtain a plant with resistance plus all the desired horticultural traits that are in a susceptible variety, which include for sweet basil large, smooth, dark green, downward cupped leaves with good classic sweet basil flavor. Devotion, Obsession, Passion, and Thunderstruck are the first resistant varieties released from the Rutgers University basil breeding program. They are marketed by VanDrunen Specialty Seeds. Organically-produced seed is available. Prospera is being marketed as organic seed by Johnny’s Selected Seeds. Amazel is a Proven Winners variety. Its seed is sterile and thus sold as cuttings primarily for producing plants for the home garden market. Limited suppression is typical with Eleonora, the first commercially available resistant variety. Emma and Everleaf (aka Basil Pesto Party and M4828Z when evaluated at Cornell) also have moderate resistance. Results and photographs from variety evaluations conducted at Cornell are available on-line.
3. **Avoid favorable conditions for disease development.** The basil downy mildew pathogen needs humidity of at least 85% in the plant canopy to be able to infect. This disease can be controlled effectively by keeping humidity low. Practices to achieve this include base watering, wide plant spacing, circulating fans, lights, and increasing temperature. Base heating is an especially effective method to reduce humidity. Set up sensors in the plant canopy to monitor humidity to ensure implementing practices are sufficient.

4. **Fan the crop.** Fanning is a practice developed and being used in Israel for basil grown in protected culture. It entails directing greenhouse fans toward plants so that leaves move. This prevents water depositing on leaves when humidity is high.

5. **Turn lights on during night.** Illuminating either leaf surface of plants growing under protected conditions during nighttime was shown to effectively suppress downy mildew in basil by inhibiting spore production through a study conducted in Israel. Light was supplied in high tunnel-like structures with 20W Day Light fluorescent bulbs each equipped with a white metal reflector (30 cm diameter), with one bulb per meter row. Spores formed on leaf tissue shaded by other leaves, thus this procedure is most effective when plants are small. Initial experiments were done with illumination throughout night. Recent research has revealed light exposure is most important during the first 6 hours of night, and the pathogen needs at least 7 hours of darkness. Red light was shown to be the most inhibitory under laboratory conditions.

6. **Apply fungicides.** A preventive program with conventional fungicides is considered necessary to achieve effective control based on results from replicated fungicide evaluations. Ranman (cyazofamid; FRAC code 21) and Revus (mandipropamid; FRAC 40) have targeted activity for downy mildew and other oomycete pathogens. Their use is permitted in greenhouses. There are several phosphorous acid (phosphanate) fungicides labeled for this disease, including ProPhyt, Fosphite, Fungi-Phite, Rampart, pHorsePhte, and K-Phite. These are suggested used at low label rate tank-mixed with Ranman and Revus, which are recommended used in alternation for resistance management.

Heritage (azoxystrobin; FRAC 11), Micora (mandipropamid; FRAC 40), Segovis (FRAC U15), and Subdue MAXX (mefenoxam; FRAC 4) are additional fungicides that can be used in greenhouse-grown plants for retail sale to consumers. Subdue MAXX and Segovis use are on supplemental labels available in the CDMS database and the NYS Pesticide database. Applicators must have these. Subdue can be applied once to plug-production trays after seeding and before seedling emergence and once after plugs are transplanted to larger pots. It must be tank-mixed with another fungicide labeled for this use. Heritage can similarly be applied only once at each production stage but both applications are to foliage. It must be applied in alternation with another fungicide. Micora and Segovis can only be applied to foliage of plants for retail sale as transplants; they are not permitted used on plants to be marketed as fresh herbs in grocery stores. Both can be applied at most twice to a crop. Micora can only be used in an enclosed greenhouse with permanent floor. Segovis can also be used in outdoor nurseries. It is important to use a fungicide resistance management program including alternation among as many chemistries based on FRAC code as possible. Resistance to mefenoxam developed quickly in Israel demonstrating the capacity of this pathogen to develop resistance.
Basil downy mildew has proven difficult to manage with fungicides approved for organic production. This is partly due to the fact there is no tolerance for any amount of disease on leafy herb crops for fresh consumption or for retain sale. Additionally, it is difficult to deliver spray material to the underside of leaves where the pathogen typically infects and produces spores. Most organic fungicides are contact materials. None of the products tested in fungicide evaluations have provided commercially-acceptable level of control. A fogger is expected to improve coverage over a boom sprayer.

There is no tolerance for downy mildew on basil for retain sale. Very few gardeners are going to apply fungicides to basil, and the products they can use have limited activity. Downy mildew can develop very quickly. I have seen at garden centers basil plants that were very healthy-appearing with some downy mildew sporulation and no leaf yellowing, but just three days later leaves on the plants not sold were yellowing and covered with spores on the underside.

7. Monitor plants for symptoms. Yellow leaf tissue in bands delimited by large veins is distinctive for downy mildew. It is important to examine the underside of leaves for the pathogen’s spores because there are other causes of leaf yellowing and spores can be present without yellowing. Photographs are posted at: http://blogs.cornell.edu/livegpath/gallery/basil/downy-mildew/

8. Heat treat affected plants. If symptoms are found early, it might be possible to save some plants by subjecting plants to heat and then taking steps to improve the management program. High temperature is detrimental to the pathogen. Maximum temperatures for infection, colonization, and spore production are 80 – 88 F. Research conducted in growth chambers demonstrated that temperatures up to 113 F kill spores and mycelium of the pathogen in affected plants, with length of effective exposure decreasing with higher temperature range, least being 6 - 9 hours at 104 – 113 F. Subsequently solar heating has been used to cure plants in Israel by closing greenhouse vents or using a transparent IR polyethylene sheet covering during sunny days. It is recommended done at first sign of downy mildew and over 3 consecutive days with 3 – 4 hours exposure. It necessitates routine monitoring to ensure temperature reaches effective range while not rising high enough to kill plants. If temperature does not go about 95 F, treating for a fourth day is recommended.

9. Promptly destroy unmarketable affected plants. Affected plants should be carefully bagged (after turning off fans) and thrown out to minimize opportunity for spores to spread to other plantings.

More information about this disease plus images and links to monitoring pages are at http://vegetablemdonline.ppath.cornell.edu/NewsArticles/BasilDowny.html.

Please Note: The specific directions on fungicide labels must be adhered to -- they supersede these recommendations, if there is a conflict. Any reference to commercial products, trade or brand names is for information only; no endorsement is intended.

Originally prepared in 2014, last updated: January 2019